#AI 技術
🎯不是台積電、不是鴻海!2026 CES揭示:這批「實體AI黑馬」主升段才剛開始!Line@連結:https://lin.ee/mua8YUP🎯2025年倒數2天,有人在等崩盤,有人在看3萬點!江江要講真心話:「別讓你的恐懼,成為別人的獲利。」這波台股多頭不是普通強,如果你現在還在被量縮過高背離嚇到不敢動,那你真的看錯行情的本質了。🚀誰說縮量是危機?那是外資在「換手大補貨」!別被空頭洗腦了。現在的量縮叫做「籌碼沈澱」。•空單大撤退:外資空單從4萬口砍到剩2萬出頭。•多頭雙主浪:月線完全沒背離,型態就是「頭頭高」。•元月必勝法:過去15年,元月勝率高達73%。這不是作夢,這是阻力最小的路,29,500點只是剛好而已!🚀CES要來了,AI不再只在雲端。2026 CES 一句話總結:AI有手、有腳、要落地了。機器人、智慧設備、實體AI全部啟動。黃仁勳、蘇姿丰同日對決,不是巧合,是宣告:下游全面升級。🔥 一月飆股在哪?精準布局這四區:1.ASIC客製化:3443創意、3661世芯就像低檔區的獵豹,等訂單放量就是噴發。2.CPO矽光子:輝達標配!3363上詮、3081聯亞、6442光聖、4979華星光、3163波若威等,從配角變主角的放量元年。3.PCB材料革命:M8升至M9。2383台光電、2368金像電、6274台燿、3167大量、8021尖點、4722國精化,獲利成長超乎想像。4.記憶體奇兵:別聽崩盤論!AI落地PC/手機,需求是倍數跳。2344華邦電、2408南亞科、4967十詮、3260威剛、8299群聯,元月隨時發動。🔴接下來我們會在粉絲團持續幫大家鎖定+追蹤,若還不知道該如何操作?那建議你務必要鎖定江江在Line @,將有更進一步的訊息給大家了解。https://lin.ee/mua8YUP🔴想了解還未起漲的市場主流,同步了解大盤多空轉折點及學習預測技術分析,江江YT節目都會持續追蹤+預告。https://reurl.cc/02drMk********************************************************有持股問題或想要飆股→請加入Line:https://lin.ee/mua8YUP江江的Youtube【點股成金】解盤:https://reurl.cc/02drMk*********************************************************(本公司所推薦分析之個別有價證券 無不當之財務利益關係以往之績效不保證未來獲利 投資人應獨立判斷 審慎評估並自負投資風險)
🎯你只知道台光電 台燿 欣興 尖點 富喬..這檔PCB「隱形冠軍」將成2026主力押寶大黑馬!Line@連結:https://lin.ee/mua8YUP🎯你知道現在的AI需求有多誇張?Google、AWS、Meta資料中心狂蓋,伺服器像不用錢一樣拉貨。PCB已經不是板子,是AI的高速公路。頻率越高、速度越快,路基就越重要。而這條路基,正在缺一種關鍵材料,缺到爆。最近我們看到2383台光電、6274台燿股價也領先表態創下歷史新高;其他像2368金像電、2313華通、8358金居、3037欣興、1815富喬、5498凱崴、8021尖點...這些PCB供應鏈,幾乎只要跟「高頻、高速」沾上邊的,都成了台股盤面上的焦點。但你不知道的是,這些CCL大廠現在正為了搶奪一種神祕的「特用樹脂」而爭破頭。這家藏在傳產化學標籤下的「AI隱形冠軍」,那就是【4722國精化】。🚀產能進入「大爆發」前夜:這不是轉型,這是重塑!國精化不再是你想的那家傳統化學廠,它正全面殺入AI電子材料核心區:👉HC材(AI專用樹脂):隨著輝達與CSP大廠追單,市場傳出擴產進度大幅提速!從2025到2026年,高階電子材料產線有望呈倍數式開出。👉PSMA樹脂(稀缺王牌):這種高頻CCL的關鍵材料,全球供貨商屈指可數。國精化聯手日本大廠JSR,正瞄準原本數倍大的供應缺口強勢布局!💰 法人眼中的「PE重評價」:獲利結構即將質變!市場法人最興奮的不是營收,而是「獲利純度」:毛利上修:隨著電子材料佔比拉升,整體毛利率有望脫離傳統化學的紅海,向20%以上的高標挑戰。本益比重新定價:當一家公司從「傳統化工」變身為「AI關鍵特化」,市場給出的評價將會完全不同!看看2383台光電、6274台燿股價已經在反映2026年的盛世,而作為「上游中的上游」供應商,4722國精化的轉型拐點,很可能就是下一個盤面焦點。🔴接下來我們會在粉絲團持續幫大家鎖定+追蹤,若還不知道該如何操作?那建議你務必要鎖定江江在Line @,將有更進一步的訊息給大家了解。https://lin.ee/mua8YUP🔴想了解還未起漲的市場主流,同步了解大盤多空轉折點及學習預測技術分析,江江YT節目都會持續追蹤+預告。https://reurl.cc/02drMk********************************************************有持股問題或想要飆股→請加入Line:https://lin.ee/mua8YUP江江的Youtube【點股成金】解盤:https://reurl.cc/02drMk*********************************************************(本公司所推薦分析之個別有價證券 無不當之財務利益關係以往之績效不保證未來獲利 投資人應獨立判斷 審慎評估並自負投資風險)
🎯你只知道華通 昇達科?太空算力已成AI新亮點!這檔「隱形冠軍」更是主力低調押寶的大贏家!Line@連結:https://lin.ee/mua8YUP🎯有一天,你用的不是地面網路,而是「天上的網路」?不是光纖、不是5G,而是500公里高空、成千上萬顆衛星在幫你跑AI、算資料、傳訊號。這不是科幻。這是未來很可能發生的投資趨勢。現在的Starlink,早就不只是「給你上網」。它正在把衛星,升級成太空伺服器。未來你滑手機的背後,可能是AI模型直接在太空推論、運算、分流。太空,正在變成一整片新的雲端資料中心。未來5年,全球要發射7萬顆低軌衛星。2040年,太空產值衝破1兆美元。這感覺像什麼?對,20年前的智慧型手機元年。🎯衛星×AI,「天基黃金十年」正式開打。講到低軌衛星,很多人第一個想到的是3491昇達科。沒錯,它是台灣最純,低軌占比超過50%,營收創新高,高頻微波、毫米波,SpaceX、Amazon Kuiper都跑不掉。但重點來了。不只3491昇達科,一顆衛星,從天上飛到你手機,中間不是一家公司搞定。射頻、天線、板材、主機板、地面站、光通訊..台灣,幾乎每一段都卡位。PCB:有2313華通、2367燿華。天線與射頻有6285啟碁、3138耀登。軍工航太有4916事欣科。後段量產有2312金寶。高頻晶片有3105穩懋。衛星間高速傳輸有6442光聖。還有一檔,江江我覺得後段潛力更猛-那就是6271同欣電。為什麼?因為它不是只押一個未來。它是三支箭一起拉滿。第一支箭:衛星RF模組+800G升級,產品價值直接跳級。第二支箭:GaN高效率電源,2026年量產時程清清楚楚,直接吃AI伺服器。第三支箭:高階車用CIS,自駕升級、單車價值暴增,毛利已經先反映。衛星、AI、車用,三個最賺錢的方向,全都押中。🔴當市場還在用「舊眼光」看衛星,你,準備好用「下一個十年」的視角布局了嗎?接下來我們會在粉絲團持續幫大家鎖定+追蹤,若還不知道該如何操作?那建議你務必要鎖定江江在Line @,將有更進一步的訊息給大家了解。https://lin.ee/mua8YUP🔴想了解還未起漲的市場主流,同步了解大盤多空轉折點及學習預測技術分析,江江YT節目都會持續追蹤+預告。https://reurl.cc/02drMk********************************************************有持股問題或想要飆股→請加入Line:https://lin.ee/mua8YUP江江的Youtube【點股成金】解盤:https://reurl.cc/02drMk*********************************************************(本公司所推薦分析之個別有價證券 無不當之財務利益關係以往之績效不保證未來獲利 投資人應獨立判斷 審慎評估並自負投資風險)
2026 AI 商業中場:從原生多模態到超級入口
AI 的競爭成為模型公司全端能力和創新的博弈。2000 年,美國網際網路泡沫破滅時,Google 面臨巨大的商業化壓力。當時他們搜尋引擎的流量暴漲,但離盈利還有一段距離。Google 曾嘗試把自己的技術授權給友商,以賺取微薄的 “經費”。但還是無法支撐公司的長遠發展。公司作為商業組織本質是逐利的。但有技術信仰的企業,往往會在短期利益與長期投入之間,選擇那條更難、更慢、也更燒錢的路徑。Google 沒有放棄技術。2002 年,Google 的工程師們發現,使用者在搜尋框中輸入關鍵詞,不只是為了搜尋資訊,也是在表達購買意圖。Google 將 “使用者搜尋意圖” 與 “商業廣告” 通過競價排名結合,在行業中找到了一個獨特的身位,將技術和商業化真正連接了起來。偉大的技術突破往往能帶企業打開新的市場。蘋果未止步於個人電腦,而締造出了劃時代的 iPhone;字節跳動抓住推薦演算法,才完成對資訊流的重構;OpenAI 固執地進行大模型訓練,讓演算法湧現出了智能。但過去兩年,AI 技術受困於找不到落地場景,商業化受阻。2025 年,DeepSeek 在保持成本優勢的同時,展現出接近人類的思考能力,讓 C 端使用者對 AI 的價值有了新的認知。不久後,OpenAI 的原生多模態模型 GPT-4o,展現了其對圖片內容的理解能力,讓 AI 生成 “吉卜力” 畫風的圖片引爆社交網路。AI 技術的進展帶來瞭解決以下兩大難題的可能性,讓市場重新評估 AI 的商業潛力。物理: AI 對真實世界的理解和執行能力不足。商業: 推理成本過高,限制了 AI 的大規模應用。2025 年底,百度發佈文心大模型 5.0,Google 發佈 Gemini 3,模型實現在統一原生架構下能理解圖片、看懂視訊,大模型統一原生多模態的潛力被逐步看到。技術進步也帶來商業化的可能。目前,大模型有望通過演算法層、架構層、系統層,乃至晶片側的全端最佳化,降低推理成本,提高模型效能,如 Anthropic 的 Claude 系列、Google 的 Gemini 系列、百度文心繫列。AI 行業的競爭不止在於算力、資料,也成為一個公司全端工程能力和基礎創新的綜合博弈。AI 能力正從文字生成走向原生多模態大模型還無法做到完全理解使用者的意圖,但語言模型正在進入 “收益平台期”——儘管算力、資料投入指數級增加,但大模型在預測下一個 Token 的任務上,所表現出的泛化性曲線已明顯放緩。單一文字維度的縮放路徑,無法滿足大模型智能繼續進化的目標。業界一個廣泛流傳的觀點是,大模型要理解世界。“現在的大模型達不到 AGI”,大模型理解世界,需要視覺、聽覺、語言等多種感官資訊的融合。兩點陣圖靈獎得主,楊立昆、Geoffrey Hinton 都曾提出類似的觀點。目前,多數多模態模型就像 “傳話筒”,圖像、語音等訊號需經過獨立模型解碼後再轉譯給語言模型,最終實現理解、生成。建構原生多模態大模型,可以讓模型從訓練階段起,就具備理解圖片、語音等各種模態資訊的能力。原生多模態模型就是能像人一樣,“端到端” 理解各種模態的資訊——前者訓練時只需專注處理單一模態資訊,難在保持 “傳話” 過程中不出現資訊失真的現象;後者則是在訓練時就要讓模型理解圖片、視訊、語音等資訊,但難在讓各種類型資料的意義互通。但原生多模態模型在訓推中需要處理大量多模態的資料,給架構設計、訓練過程和推理等多個層面都帶來了指數級的壓力。Google 從開始訓練 Gemini 系列,便確定原生多模態的技術路徑。但訓練資料較難統一,剛開始 Google 的模型在應用側的效果並算不突出。直到 2025 年末,Gemini 3.0 展現的多模態理解能力,讓業界重新相信了 “原生多模態”。2025 年,國內企業發佈的模型開始呈現原生多模態轉向,發佈的模型有各自的特點。階躍星辰的 Step-3 針對國產晶片頻寬進行了最佳化,降低了企業的商用成本;智譜的 GLM-4.6V 和字節的豆包大模型 1.8,都是將工具呼叫能力原生融入大模型,讓 AI 可以行動;阿里發佈的 Qwen 3-Omni 主要通過最佳化使用者互動與開源,擴大生態。百度文心大模型 5.0 則專注於模型本身,發佈了參數量達 2.4 兆的原生全模態大模型。在國內為數不多的全模態模型中,參數量最大,並在底層架構實現了文字、圖像、音訊、視訊多模態的統一。真實世界本質是跨模態的訊號流,大模型要理解世界,原生多模態是技術上的趨勢。以百度文心大模型 5.0 為例,其文字與視覺理解能力體現出的泛化性,均在 LMArena 大模型競技場相應領域的全球排行榜中,佔據前列。通過原生多模態架構,模型能捕捉到更多非語言資訊,AI 能夠像人類一樣感知現實,並通過 Agent 建立與世界更深層的連接。這也讓大模型切入具身智能、智能座艙、消費硬體等兆美金級賽道的商業場景成為可能。推理成本定義 AI 商業化拐點2024 年底,行業從 “快思考” 轉向 “慢思考”。慢思考是讓模型在回答問題之前,先模仿人類思考路徑,在後台列出完整思維鏈條,自我修正後再生成回答。慢思考模式下使用者每提一個問題,單次消耗的 token 數量都激增。OpenRouter 發佈的年度報告指出,2025 年推理任務消耗 token 的佔比不斷升高,模型專用於推理類任務的呼叫量,佔 token 消耗總額的超 50% 。使用者規模擴大後,模型廠商需為使用者消耗的 token 支付高額的成本。能否降低推理成本,成為 AI 走向商業化的關鍵。2025 年初,DeepSeek 憑藉 MLA 架構和精細化的 MoE 設計,顯著降低大模型計算消耗的同時,提高了模型的性能,被行業視為 “效率標竿”。但 DeepSeek 只是語言模型。語言模型的降本經驗並不能直接平移到多模態領域。GPT-5、Gemini 3、豆包 1.8、文心 5.0 等原生多模態模型,需要處理視覺和音訊流,其對訓練算力的需求是純文字模型的 5 到 10 倍,推理過程也更加複雜。GPT-4o 訓練投入超 1000 PFlop/s-day,大約相當於數千台頂級 GPU 滿負荷運行數周。原生多模態模型若要實現 DeepSeek 式的降本,僅靠模型層面的演算法創新是不夠的。以文心 5.0 為例,依託飛槳深度學習框架進行大規模 MoE 模型訓練,模型預訓練性能較基線提速 230%,啟動參數比低至 3%。在國產晶片替代的大背景下,大模型降本需要同時掌握晶片、框架、模型和應用四個層面的自主權,對企業全端系統工程能力提出了更高的要求。目前國內具備這種閉環能力的只有百度和華為。當推理成本降低,模型可以在後台持續完成自我博弈、工具呼叫和邏輯反思,以 Manus 為代表的通用 Agent 就能實現在網頁間穿梭,完成報表分析。這不光重塑了軟體,也驅動模型能力從 “雲端” 向 “端側” 下沉。原本昂貴的 AI 被嘗試融合進 AI 眼鏡、智能座艙和手機 OS 中。顯然,AI 的下半場不再只是比拚模型規模,而是比 “誰能以更低的成本提供更深的智能”。在這場效率革命中,降本不是目的,而是手段。誰是 AI 時代下一個 “超級入口”?2000 年,百度也憑藉自身技術,為搜狐、新浪、網易等入口網站提供搜尋方面的支援。彼時,這些入口網站雖然擁有龐大的搜尋流量,但 “搜尋” 卻僅被其視為一個附屬的功能模組,沒進行深度最佳化。2001 年,李彥宏力排眾議要推出自己的入口網站,以搜尋引擎為核心的入口 “百度”(Baidu.com)應運而生。百度憑藉超鏈分析技術和精準的中文分詞,從入口網站的索引中脫穎而出。那時,百度的成功在於解決了 “搜得準” 的問題。百度成為了最初的 “平台級入口”。時間回到 2025 年,AI 技術讓 “超級入口” 的邏輯發生了質變,下一代超級入口正從 “匯聚流量的 app” 轉向 “多模態的智能助手”。在 “超級入口” 之爭上,國內能與大廠競爭的創業公司屈指可數。大廠不會放棄任何一種擴張的可能。字節跳動、阿里、騰訊與百度正依託各自的生態,搶佔 “平台級入口” 這一高地。12 月 1 日,字節發佈和中興努比亞合作開發的豆包手機助手,試圖重塑人機互動的底層邏輯。使用者僅通過語音互動,就可以讓豆包手機助手直接接管使用者螢幕。同期,阿里調動整個集團資源,打造 AI 時代的超級助手。阿里成立千問 C 端事業群,將之前阿里雲事業部下通義千問 APP 改名 “千問 APP” 發佈,以 “一周一更新” 的速度迭代。近日,千問 APP 已接入高德地圖,未來阿里或把夸克、UC、天貓精靈等功能也整合進千問 APP。百度基於搜尋,也上線了百度文心助手,對標 Gemini 3,競爭超級入口。百度搜尋全面升級文心助手 AIGC 創作能力,支援 AI 圖片、AI 視訊、AI 音樂、AI 播客等多種模態創作。從硬體佈局的演進趨勢來看,百度可以依託文心 5.0 大模型的技術底座,通過蘿蔔快跑接管物理空間,用小度佔據家庭互動入口,讓資訊實現從虛擬空間向真實空間的滲透。幾周前,Google 將 Gemini 3 嵌入核心搜尋業務,通過跨應用的資料調取,即時生成能與使用者互動的 UI 頁面,向使用者直接交付搜尋結果。Google 通過自研 AI 晶片和 Google Cloud 支援大模型訓練、推理,訓練出的先進的模型又能與自身搜尋、雲盤、Android 生態等入口融合,繼續產生相應領域的高品質資料,持續推動智能升級。有行業人士認為,Google 已形成 “算力-模型-資料-應用” 的系統級飛輪,而百度是中國為數不多能與 Google 對標的 “AI 六邊形戰士”。因為下個時代的 AI 競爭的不止是模型能力,而是演進為全端式的系統競爭,比拚的是誰能完成 “算力—系統—模型—入口—資源—行動能力” 六個層面的閉環。他們認為,百度依託崑崙芯、智能雲作為算力與系統底座,以文心大模型作為能力中樞,連結搜尋、網盤、小度等流量入口,並通過搜尋、地圖與自動駕駛等業務將能力落地到現實世界,形成了六大要素閉環,是國內最接近 “AI 六邊形戰士” 形態的公司之一,具備長期演進的系統飛輪能力。圖源網路水面之下,騰訊同樣暗流湧動。12 月下旬,騰訊新成立 AI Infra 部、AI Data 部、資料計算平台部,27 歲的前 OpenAI 研究員姚順雨出任 “CEO / 總裁辦公室” 首席 AI 科學家。過去數月裡,騰訊也以加倍薪資挖角 AI 人才,強化研發體系。在生成式人工智慧的第一波流量交鋒中,有的公司水漲船高,有的公司陷入沉靜。但在喧囂之下,堅守 “技術信仰” 的企業,正在等待那個規則被重新定義的時刻。 (晚點LatePost)
突發!新物種!AI盡頭是空間智能深度洞察研究報告!2025
前言:AI的“空間轉向”與新物種誕生的必然性1.1 前言2025年,人工智慧產業迎來歷史性轉折點——以大型語言模型(LLM)為代表的通用AI技術在文字互動、圖像生成等領域的突破已觸及天花板,而“空間智能”作為連接虛擬算力與物理世界的核心載體,正成為AI技術演進的終極方向。史丹佛大學教授李飛飛在《從語言到世界:空間智能是AI的下一個前沿》中明確指出,當前AI系統困於“語言的世界”,缺乏對現實空間、物理規律與因果關係的真正理解,而空間智能將實現AI從“理解語言”到“理解世界”的跨越,成為AI攀登的下一座高峰。這一轉向不僅催生了“AI+空間”融合的產業新物種,更重塑了全球算力產業鏈的競爭格局與需求結構。本報告聚焦2025年AI與空間智能融合發展的核心議題,核心研究內容包括:空間智能的技術架構與“新物種”產業形態界定;全球及中國算力產業鏈的全景對比(上游晶片、中游算力服務、下游應用);空間智能驅動下的算力需求分層分析(行業、場景、算力形態);技術瓶頸與風險挑戰;未來發展趨勢與產業機遇。報告依託2025年最新行業資料、政策檔案及企業實踐案例,兼具技術深度與產業指導價值,旨在為產業鏈參與者、投資者及政策制定者提供全景式洞察。1.2 核心結論預覽1. 技術演進:空間智能是AI的“終極形態”,其核心是建構融合幾何、物理與動態規則的“世界模型”,實現從被動分析到主動規劃的跨越,當前已進入技術突破與規模化應用的臨界點。2. 產業新物種:催生三大類新物種形態——技術層的“空間大模型”、產品層的“具身智慧型手機器人”、服務層的“空間即服務(SPaaS)”,2025年全球相關市場規模已突破1.2兆元。3. 算力格局:全球智能算力規模2025年達1980 EFLOPS,中國佔比37.8%(748 EFLOPS),算力結構從訓練主導向推理驅動切換,邊緣算力增速(CAGR 50%-60%)遠超雲端。4. 產業鏈競爭:國外形成輝達、AMD雙寡頭格局,國內“一超多強”態勢顯現,國產晶片替代率2025年達41%,沐曦、壁仞等企業加速資本化處理程序。5. 需求驅動:智慧城市、工業智能空間、自動駕駛是核心需求領域,生物醫藥、AR/VR等細分場景算力需求增速超200%,端側AI裝置出貨量2025年破5億台。6. 挑戰與機遇:技術瓶頸集中於晶片製程、叢集互聯效率,地緣政治與能源約束加劇供需失衡;未來機遇在於異構算力協同、綠電算力基建及跨行業場景滲透。第一章 概念界定:AI與空間智能的融合演進1.1 空間智能的核心定義與技術內涵空間智能(Spatial Intelligence)是指機器對物理空間進行感知、建模、推理、規劃並實現互動的綜合能力,其核心是將多模態感知資料轉化為對空間關係、物理規律與因果邏輯的理解,實現虛擬算力與物理世界的精準對應。與傳統AI技術相比,空間智能具有三大核心特徵:一是多模態融合感知,整合LiDAR、攝影機、UWB、地理資訊等多源資料,實現釐米級定位與毫米級建模精度;二是動態世界建模,建構兼具語義與幾何屬性的3D動態場景,支援物理規則模擬與未來狀態預測;三是具身互動能力,依託“感知-決策-行動”閉環,實現與物理空間的自主協同互動。從技術架構來看,空間智能的實現需建構“五層技術堆疊”:第一層底層為算力支撐層(雲端+邊緣+終端異構算力);第二層為感知硬體層(LiDAR、毫米波雷達、高畫質攝影機等);第三層為資料處理層(空間資料清洗、融合與標註);第四層為核心演算法層(3D生成模型、物理引擎、具身智能演算法);頂層為應用場景層(智慧城市、工業、自動駕駛等)。其中,核心演算法層的“世界模型”是空間智能的技術核心,需突破現有LLM的範式侷限,實現語義關係與物理規律的統一理解。1.2 AI向空間智能演進的邏輯必然性AI技術的演進遵循“能力升級-場景拓展-需求倒逼”的邏輯,向空間智能轉向是技術發展與產業需求共同作用的必然結果。從技術層面看,當前以LLM為代表的通用AI存在三大核心侷限:一是缺乏空間認知能力,即使是最新的多模態大模型,在估算距離、方向、大小等基礎空間屬性時表現不及隨機水平;二是物理規律認知缺失,無法穩定預測物體運動軌跡、碰撞關係等基本物理規則;三是動態連貫性不足,生成的視訊內容往往在幾秒內失去空間邏輯連貫性。這些侷限使得AI難以真正賦能需要與物理世界互動的場景,成為技術演進的“天花板”。從產業需求來看,數字經濟與實體經濟的深度融合對AI提出了“落地物理世界”的迫切需求。智慧城市需要全域空間感知與智能調度,工業製造需要數字孿生與即時最佳化,自動駕駛需要高精度空間定位與動態決策,這些場景均要求AI具備空間認知與互動能力。據測算,2025年全球需要空間智能支撐的產業規模已達5兆美元,佔數字經濟總量的28%,需求倒逼成為AI向空間智能轉向的核心驅動力。從認知本質來看,空間智能是人類認知建構的“腳手架”,驅動著想像、創造與推理能力的形成。李飛飛團隊的研究表明,空間智能是連接感知與行動的核心能力,人類通過空間認知實現停車測距、人群穿行等日常動作,其本質是“想像-感知-行動”的一體化過程。AI作為模擬人類智能的技術體系,向空間智能演進是其逼近甚至超越人類認知能力的必然路徑,也是實現從“弱人工智慧”向“強人工智慧”跨越的關鍵環節。1.3 空間智能的“新物種”形態界定AI與空間智能的融合催生了三類具有顛覆性的產業新物種,這些新物種打破了傳統產業邊界,重構了價值創造模式:1. 技術層新物種:空間大模型。區別於傳統LLM,空間大模型以“空間資料”為核心訓練素材,融合地理資訊、3D點雲、物理規則等資料,具備空間建模、動態預測與場景生成能力。例如,史丹佛大學World Labs研發的世界模型可在語義與幾何層面理解複雜3D場景,推理物理屬性與互動關係,並生成連貫可探索的虛擬空間。2025年,國內外已有12款空間大模型實現商用,其中GPT-5空間版、百度文心空間大模型等在建築設計、城市規劃領域的應用精準率達93.6%。2. 產品層新物種:具身智慧型手機器人。依託空間感知與互動能力,具身智慧型手機器人實現了從“固定場景作業”到“全域自適應作業”的跨越,可在動態空間中自主規劃路徑、規避障礙並完成任務。典型案例包括亞馬遜倉庫智能分揀機器人(空間定位精度±2cm)、特斯拉Optimus人形機器人(具備家庭空間互動能力)、醫療微創手術機器人(空間操作精度±0.1mm)。2025年全球具身智慧型手機器人出貨量達120萬台,同比增長210%。3. 服務層新物種:空間即服務(SPaaS)。將空間智能能力封裝為標準化服務,通過API介面向千行百業輸出,實現“空間能力的按需呼叫”。例如,華為盤古空間服務平台可提供城市全域空間建模、動態交通預測等服務,已接入200余個智慧城市項目;GoogleEarth Engine空間服務平台為農業、環保領域提供土地利用監測、災害預警等服務,全球使用者超500萬。2025年全球SPaaS市場規模達2000億元,預計2030年突破1.2兆元。1.4 空間智能的發展階段與2025年關鍵節點空間智能的發展可劃分為四個階段:技術探索期(2015-2020年)、技術突破期(2021-2025年)、規模化應用期(2026-2030年)、成熟普及期(2030年後)。2025年正處於“技術突破期”向“規模化應用期”過渡的關鍵節點,呈現三大標誌性特徵:1. 技術突破節點:3D生成模型、物理引擎與具身智能演算法實現融合,空間大模型的場景理解精準率突破90%,邊緣算力支援毫秒級空間響應(延遲≤10ms)。例如,UWB+LiDAR復合定位技術市場滲透率達35%,實現釐米級定位精度;液冷技術普及使智算中心PUE降至1.1以下,支撐單機櫃算力密度達5P Flops。2. 產業落地節點:核心應用場景實現規模化落地,智慧城市試點項目覆蓋全國89%地級市,北京、上海、深圳等超大城市完成全域智能空間基礎設施建設;工業數字孿生工廠覆蓋率突破60%,生產線綜合效率(OEE)平均提升18個百分點;全屋智能滲透率達12.3%,華為鴻蒙生態與小米AIoT平台連接裝置突破8億台。3. 政策與資本節點:全球主要經濟體出台空間智能專項政策,中國《智能空間產業發展行動計畫(2025-2030)》明確培育30家以上獨角獸企業,組建國家級智能空間創新中心;美國《晶片與科學法案》投500億美元用於算力基建,重點支援空間智能相關晶片研發;歐盟“數字羅盤計畫”建100個百億億次超算節點,支撐空間智能場景落地。資本市場熱度攀升,2025年國內算力晶片企業迎來上市潮,摩爾線程、沐曦股份等相繼登陸科創板,融資規模超40億元。第二章 技術架構:空間智能的核心技術體系與算力支撐2.1 核心技術堆疊:從感知到互動的全鏈路拆解2.1.1 感知層技術:多模態融合與高精度定位感知層是空間智能的“眼睛”,核心目標是獲取物理空間的多維度資料,實現高精度、高可靠的空間感知。當前主流技術方向為多模態感測器融合,整合LiDAR、毫米波雷達、高畫質攝影機、UWB、IMU(慣性測量單元)及地理資訊系統(GIS)資料,彌補單一感測器的侷限性。例如,LiDAR具備高精度3D測距能力,但受天氣影響較大;攝影機可獲取豐富語義資訊,但測距精度不足;UWB適合室內短距離定位,室外表現較差。通過多模態融合演算法,可實現“全天候、全場景、高精度”的空間感知。關鍵技術突破包括:一是LiDAR技術的成本下降與性能提升,2025年車規級LiDAR單價降至500美元以下,探測距離突破300米,點雲密度達300萬點/秒;二是UWB+LiDAR復合定位技術,結合兩者優勢,實現室內外無縫切換定位,精度達±2cm,2028年市場滲透率預計達68%;三是多模態資料融合演算法,基於Transformer架構的融合模型可有效處理異構資料,提升感知精準率,在複雜交通場景中目標識別精準率達99.2%。2.1.2 建模層技術:3D動態場景與數字孿生建模層是空間智能的“大腦中樞”,核心是將感知資料轉化為結構化的空間模型,實現對物理世界的精準對應。技術方向分為靜態建模與動態建模兩類:靜態建模聚焦空間幾何結構的重建,如建築、道路、地形等;動態建模聚焦空間中物體的運動狀態與互動關係,如車輛、行人、裝置等。數字孿生是建模層的典型應用,通過“物理實體-虛擬模型-資料鏈路-服務應用”的閉環,實現物理空間與虛擬空間的即時同步。關鍵技術突破包括:一是3D生成模型,基於擴散模型與Transformer的融合架構,可快速生成高保真3D場景,例如史丹佛大學Marble平台允許創作者無需傳統3D建模工具,快速建立和編輯完整的虛擬世界;二是動態場景預測演算法,結合物理引擎與深度學習,可預測空間中物體的運動軌跡,預測準確率達95%以上,為自動駕駛、機器人導航提供支撐;三是輕量化建模技術,針對邊緣端裝置算力有限的問題,提出輕量化3D模型架構,模型體積壓縮70%以上,可在手機、邊緣閘道器等裝置上即時運行。2.1.3 決策層技術:空間推理與具身智能演算法決策層是空間智能的“決策核心”,核心是基於空間模型進行推理、規劃與決策,實現從“理解空間”到“利用空間”的跨越。核心技術包括空間推理演算法、路徑規劃演算法與具身智能決策演算法。空間推理演算法聚焦空間關係的邏輯判斷,如“物體A在物體B的左側”“路徑C比路徑D短20米”等;路徑規劃演算法聚焦動態環境下的最優路徑選擇,如自動駕駛中的避障路徑規劃、機器人的倉儲分揀路徑規劃;具身智能決策演算法聚焦“感知-行動”閉環,使智能體能夠根據空間環境變化調整行動策略。關鍵技術突破包括:一是空間大模型的推理能力提升,GPT-5空間版、文心空間大模型等可基於3D場景進行複雜推理,如建築結構安全性評估、城市交通流量最佳化;二是強化學習在路徑規劃中的應用,通過模擬海量空間場景訓練模型,使智能體在動態環境中(如擁堵路段、突發障礙)快速找到最優路徑,規劃效率提升40%以上;三是人機協同決策技術,結合人類經驗與AI推理能力,在醫療手術、工業操作等高精度場景中實現“人機互補”,降低操作風險。2.1.4 互動層技術:無感化與人機協同互動層是空間智能的“輸出介面”,核心是實現智能體與物理空間、人類的高效互動。技術方向分為兩類:一是智能體與物理空間的互動,如機器人的機械臂操作、自動駕駛汽車的轉向與制動;二是智能體與人類的互動,如語音互動、手勢互動、腦機介面等。當前發展趨勢是“無感化互動”,即智能體通過感知人類行為、情緒等訊號,主動提供服務,無需人類主動觸發。關鍵技術突破包括:一是手勢與姿態識別技術,基於電腦視覺的即時姿態捕捉精度達98%,可實現對機器人的手勢控制、智能座艙的姿態互動;二是語音互動的空間化,結合空間聲學技術,實現多區域語音識別,區分不同位置的說話人,在智慧辦公場景中支援多人同時語音指令;三是腦機介面技術,在高端辦公、醫療場景中實現腦電波控制,2029年商用化率預計突破15%。2.2 算力支撐體系:雲端-邊緣-終端的異構協同空間智能的全鏈路技術落地離不開算力支撐,其算力需求具有“高並行、低延遲、異構化”的特徵:高並行源於多模態感測器的海量資料(如LiDAR每秒產生數十GB資料);低延遲源於即時互動需求(如自動駕駛需≤10ms的決策延遲);異構化源於不同任務對算力的差異化需求(如建模需GPU的平行計算能力,推理需ASIC的高能效比)。為此,空間智能建構了“雲端-邊緣-終端”三級異構算力協同體系,各層級功能與算力形態如下:2.2.1 雲端算力:大規模訓練與全域調度雲端算力是空間智能的“核心算力底座”,主要承擔空間大模型訓練、全域空間資料處理、跨區域調度等重算力任務。2025年全球雲端智能算力佔比70%-75%,單叢集算力達50 EFLOPS,可支撐萬卡級GPU叢集進行空間大模型預訓練。例如,GPT-5空間版的訓練需萬卡級GPU叢集,單次訓練成本超千萬美元,訓練過程消耗算力達100 EFLOPS·天。雲端算力的核心技術方向是異構計算與叢集互聯最佳化。異構計算整合GPU、CPU、NPU、TPU等多種晶片,發揮不同晶片的優勢;叢集互聯技術通過高速互聯匯流排(如輝達NVLink、國產昇騰高速互聯匯流排)提升叢集通訊效率,當前萬卡級叢集互聯效率達60%-70%,仍是算力擴展的主要瓶頸。為支撐雲端算力需求,全球智算中心建設加速,中國“東數西算”工程建成8大算力樞紐,2025年新增算力60%以上集聚國家樞紐節點,新建大型資料中心綠電佔比超80%。2.2.2 邊緣算力:即時推理與本地決策邊緣算力是空間智能的“即時響應核心”,部署於靠近物理空間的邊緣節點(如基站、智能路側裝置、工業閘道器),主要承擔即時推理、本地資料處理、低延遲決策等任務。邊緣算力的核心優勢是低延遲,可將資料傳輸與處理延遲控制在毫秒級,滿足自動駕駛、工業即時控制等場景需求。2025年邊緣算力佔比約15%-20%,2030年將升至30%-35%,2025-2030年CAGR達50%-60%,邊緣AI晶片市場規模達150億美元。邊緣算力的核心技術方向是高能效比晶片與輕量化演算法。邊緣裝置通常受限於功耗與體積,需要高能效比的專用晶片(如ASIC、NPU);同時,通過模型輕量化(剪枝、量化、蒸餾)降低推理算力需求。例如,華為昇騰310B邊緣晶片能效比達200 TOPS/W,可支撐智能路側裝置的即時目標識別;特斯拉D1晶片專為自動駕駛邊緣計算設計,單晶片算力達362 TOPS,滿足車載即時決策需求。2.2.3 終端算力:本地感知與輕量化互動終端算力是空間智能的“末端感知核心”,部署於終端裝置(如智慧型手機、智能手錶、小型機器人),主要承擔本地感知資料預處理、輕量化互動等任務。終端算力的核心需求是低功耗與小型化,滿足移動裝置的續航與體積要求。2025年終端算力佔比約5%-10%,智慧型手機AI算力達10 TOPS以上,車載計算平台增速超40%。終端算力的核心技術方向是整合化晶片與低功耗演算法。整合化晶片將CPU、GPU、NPU等功能整合於單一晶片(如手機SoC),提升整合度與能效比;低功耗演算法通過最佳化計算流程,降低資料處理的功耗。例如,蘋果A18 Pro晶片整合神經網路引擎,算力達35 TOPS,可支撐手機端3D場景掃描與AR互動;小米澎湃C2晶片專為智能穿戴裝置設計,能效比達150 TOPS/W,滿足長期續航需求。2.2.4 異構協同技術:算力資源的高效調度雲端-邊緣-終端的算力協同是空間智能高效運行的關鍵,核心技術是統一調度平台與高速通訊網路。統一調度平台通過算力感知、任務拆分與資源分配,實現“任務在最合適的算力節點運行”:重算力任務(如模型訓練)分配至雲端,即時任務(如自動駕駛推理)分配至邊緣,輕量化任務(如本地感知)分配至終端。高速通訊網路是協同的基礎,5G-A網路支撐的毫秒級空間感知系統實現釐米級定位精度,光互聯技術升級推動CPO市場2025-2027年CAGR達78%,OCS CAGR達120%。當前異構協同的關鍵突破是“算力網路”技術,通過軟體定義網路(SDN)、網路功能虛擬化(NFV)等技術,將分散的算力資源整合為“算力池”,實現跨區域、跨層級的算力調度。例如,中國電信“天翼算力網路”已接入20個省級算力樞紐,實現算力資源的按需調度;中國移動“算力網路”支撐智慧城市場景下的邊緣-雲端算力協同,降低資料傳輸成本30%以上。2.3 2025年技術突破與瓶頸:從可用到好用的差距2.3.1 關鍵技術突破清單1. 感測器技術:車規級LiDAR單價降至500美元以下,探測距離突破300米;UWB+LiDAR復合定位精度達±2cm;高畫質攝影機影格率突破240fps,低光照環境識別精準率達98%。2. 建模技術:3D生成模型生成效率提升10倍,高保真3D場景生成時間從小時級降至分鐘級;動態場景預測準確率達95%以上,預測時長從1秒擴展至5秒。3. 演算法技術:空間大模型參數規模突破兆級,場景理解精準率達93.6%;輕量化模型體積壓縮70%以上,邊緣端推理延遲≤10ms。4. 算力技術:晶片製程推進至3nm/2nm,輝達B200性能較H100翻倍;國產晶片(昇騰910B、寒武紀590)替代率達41%;液冷技術普及使PUE降至1.1以下,能耗降40%。5. 通訊技術:5G-A網路實現10Gbps下行速率,毫秒級傳輸延遲;CPO技術實現光電器件與晶片的整合,通訊頻寬提升5倍。2.3.2 核心技術瓶頸1. 晶片技術瓶頸:晶片製程逼近物理極限,2nm以下製程成本指數級上升,性能提升放緩;高端晶片受地緣政治影響供給受限,全球GPU供需缺口15%-20%。2. 叢集互聯瓶頸:萬卡級叢集互聯效率僅60%-70%,成為算力擴展的主要障礙;儲存頻寬與算力增長不匹配,CXL協議普及尚需時間,資料傳輸延遲影響大規模訓練效率。3. 演算法泛化瓶頸:空間大模型的場景泛化能力不足,在陌生環境中的精準率下降20%-30%;動態場景中突發情況(如交通事故、極端天氣)的預測能力薄弱。4. 資料質量瓶頸:空間資料標註成本高,3D資料標註單價是2D資料的5倍以上;多源資料格式不統一,資料融合難度大;隱私保護要求提升,空間資料採集與使用受限。5. 能源約束瓶頸:智算中心能耗激增,2026年資料中心IT電力需求達96GW,配套電力設施建設壓力大;邊緣與終端裝置功耗控制仍需突破,影響續航能力。第三章 全球算力產業鏈全景分析:競爭格局與技術路線3.1 算力產業鏈結構:從上游核心硬體到下游應用算力產業鏈圍繞“算力生產-算力服務-算力應用”形成完整生態,分為上游核心硬體、中游算力服務、下游應用三大環節,各環節相互支撐、協同發展。上游核心硬體是算力生產的基礎,中游算力服務是算力流通的載體,下游應用是算力需求的來源,三者共同構成“硬體支撐-服務賦能-應用驅動”的產業閉環。2025年全球算力產業鏈規模達6.5兆美元,其中上游硬體佔比45%,中游服務佔比35%,下游應用佔比20%。3.1.1 上游核心硬體:算力的“物理基礎”上游核心硬體包括晶片、伺服器、感測器、光模組、儲存裝置等,其中晶片是核心中的核心,佔上游硬體成本的50%以上。晶片環節分為通用晶片(CPU、GPU)、專用晶片(ASIC、NPU、TPU)、可程式設計晶片(FPGA)三類,分別適用於不同算力場景:GPU主導訓練場景,2027年市場規模達5000-6000億美元;ASIC在推理場景優勢擴大,2027年市場規模280億美元,佔AI晶片市場35%;NPU/TPU等專用晶片快速滲透,2025年市場規模850億美元。伺服器環節聚焦智算伺服器,搭載多顆AI晶片,支援大規模平行計算,2025年全球智算伺服器市場規模達1200億美元,同比增長45%。感測器環節是空間智能的專屬硬體,LiDAR、毫米波雷達等空間感知感測器市場規模達300億美元,同比增長60%。光模組環節支撐高速通訊,2025年CPO市場規模達50億美元,OCS市場規模達20億美元。儲存裝置環節聚焦高速儲存(如HBM、SSD),HBM3E記憶體頻寬達19.6TB/s,2025年市場規模達150億美元。3.1.2 中游算力服務:算力的“流通載體”中游算力服務包括算力基礎設施(智算中心、邊緣節點)、算力營運服務(雲算力、邊緣算力租賃)、算力賦能服務(模型訓練、資料處理)等。智算中心是中游核心基礎設施,2025年全球智算中心數量達1200個,中國佔比40%,“東數西算”工程8大算力樞紐集聚60%以上新增算力。算力租賃服務是當前最熱門的細分領域,受益於大模型訓練與推理需求爆發,2025年全球算力租賃市場規模達800億美元,同比增長80%。算力賦能服務聚焦專業化算力解決方案,為下遊客戶提供定製化的模型訓練、資料處理服務,頭部企業包括亞馬遜AWS、微軟Azure、阿里雲、騰訊雲等。此外,算力網路服務快速發展,通過整合分散算力資源,實現算力的跨區域調度,2025年全球算力網路服務市場規模達300億美元。3.1.3 下游應用:算力的“需求來源”下游應用分為空間智能專屬應用與通用AI應用兩類,其中空間智能專屬應用是核心增長引擎,包括智慧城市、工業智能空間、自動駕駛、AR/VR、智能醫療等。2025年空間智能相關應用佔算力需求的35%,其中智慧城市佔比最高(12%),工業智能空間次之(8%),自動駕駛(7%)、AR/VR(4%)、智能醫療(4%)緊隨其後。通用AI應用包括網際網路內容生成、金融風控、生物醫藥研發等,佔算力需求的65%,其中網際網路行業佔算力採購的60%,阿里、騰訊等頭部企業未來三年AI投資超5000億。3.2 國外算力產業鏈:雙寡頭主導與技術引領3.2.1 美國:全產業鏈主導,技術壁壘高築美國是全球算力產業鏈的領導者,在晶片、伺服器、算力服務等核心環節佔據主導地位,形成“晶片-軟體-服務-應用”的全產業鏈優勢。晶片環節,輝達、AMD形成雙寡頭格局,佔據全球AI晶片市場的70%以上份額。輝達2025年推出Blackwell B200晶片,採用“單封裝雙芯粒”路線,算力密度和記憶體頻寬達行業極致,性能較H100翻倍,並拋出2026–2027路線圖,Vera Rubin與Rubin Ultra即將推出,Rubin推理峰值50 PFLOPS、HBM4記憶體288GB,FP4稀疏算力是B200的2.5倍。AMD採用Chiplet思路,MI350系列採用CDNA4架構、台積電第二代3nm工藝,配備288GB HBM3E記憶體,峰值2.3 PFLOPS,與B200直接競爭,2026年的MI400將邁入2nm,配備432GB HBM4記憶體,目標直指Rubin。算力服務環節,亞馬遜AWS、微軟Azure、GoogleCloud佔據全球雲算力市場的65%份額,其中AWS的Trainium晶片專為模型訓練設計,Inferentia晶片專為推理設計,形成“自研晶片+雲服務”的閉環;微軟Azure與輝達深度合作,推出Azure ND H100 v5虛擬機器,支援萬卡級叢集訓練;GoogleCloud推出TPU v5e晶片,能效比提升2倍,支撐空間大模型訓練。應用環節,美國在自動駕駛、AR/VR、生物醫藥等空間智能相關領域領先,特斯拉Autopilot採用自研D1晶片與多模態感知技術,自動駕駛Level 4等級的測試里程突破10億英里;Meta的Quest 3 VR裝置搭載空間感知晶片,實現高精度空間定位與虛擬場景融合;OpenAI與生物醫藥企業合作,利用空間大模型加速藥物研發,分子結建構模效率提升10倍。政策與資本支援方面,美國《晶片與科學法案》投500億美元用於算力基建,重點支援AI晶片研發與智算中心建設;國防部、能源部等部門持續投入資金支援空間智能相關技術研發;資本市場對算力企業的估值溢價顯著,輝達市值突破3兆美元,成為全球市值最高的企業之一。3.2.2 歐盟:政策驅動,聚焦協同與綠色歐盟算力產業鏈以政策驅動為核心,聚焦算力協同與綠色低碳,試圖通過“聯合創新”突破美國技術壟斷。晶片環節,歐盟缺乏具有全球競爭力的晶片企業,主要依賴輝達、AMD等美國企業,同時通過“歐洲晶片計畫”投入430億歐元支援本土晶片研發,目標2030年本土晶片產能佔全球20%。重點發展方向為專用晶片,如用於工業智能空間的ASIC晶片、用於自動駕駛的邊緣晶片。算力基礎設施環節,歐盟“數字羅盤計畫”提出建設100個百億億次超算節點,支撐空間智能、氣候變化、生物醫藥等領域的科研與應用;推動“歐洲算力聯盟”(EUC)建設,整合成員國算力資源,實現跨區域算力協同。2025年歐盟已建成20個超算節點,其中芬蘭LUMI超算、德國JUWELS超算躋身全球前十,支援工業數字孿生、城市空間規劃等場景。應用環節,歐盟聚焦智慧城市與工業4.0,推出“智慧城市和社區創新夥伴關係”計畫,支援200個智慧城市試點項目;德國“工業4.0”戰略推動工業智能空間落地,西門子數字孿生工廠覆蓋率達70%,生產線效率提升20%以上;法國在智能交通領域領先,巴黎建成全域智能交通管理系統,交通擁堵率下降30%。綠色算力是歐盟的核心特色,提出2030年資料中心全生命周期碳排放量較2020年下降50%,新建智算中心綠電佔比超90%;推廣液冷、風能、太陽能等綠色技術,芬蘭LUMI超算採用水力發電,PUE降至1.05以下,為全球最低之一。3.2.3 其他國家:差異化佈局,依附核心市場日本聚焦機器人與智能感測領域,索尼、松下等企業在LiDAR、毫米波雷達等感測器技術上具有優勢,索尼Vision-S電動概念車搭載28個感測器,實現高精度空間感知;軟銀集團投資大量具身智慧型手機器人企業,推動空間智能在服務機器人領域的應用。政策方面,日本《數字社會推進基本法》投入200億美元支援算力基建,目標2025年智能算力規模達100 EFLOPS。韓國聚焦晶片與終端裝置,三星電子在晶片製造領域具有優勢,2025年實現3nm製程量產,為輝達、AMD提供代工服務;SK海力士在HBM記憶體領域佔據全球40%份額,支撐高端AI晶片的記憶體需求;三星Galaxy S25手機搭載自研NPU晶片,算力達40 TOPS,支援AR空間互動。其他開發中國家主要依附歐美核心市場,通過承接算力服務外包、引進技術等方式發展,如印度、東南亞國家聚焦算力服務外包,為歐美企業提供資料標註、模型訓練輔助服務;巴西、南非等國家推動智慧城市試點,引進歐美成熟技術與裝置。3.3 中國算力產業鏈:自主可控加速,“一超多強”格局顯現3.3.1 上游核心硬體:國產替代加速,突破關鍵瓶頸晶片環節,中國形成“一超多強”的格局,昇騰系列晶片扮演“頭雁”角色,搭建“晶片-框架-叢集-應用”的四級閉環,已支援建造多個萬卡級叢集,2025年推出384卡超節點新形態,最大算力可達300 PFLOPS,配備創新的高速互聯匯流排,大幅提升大模型訓推效率。寒武紀聚焦AI專用晶片,2024年四季度首次實現單季度盈利,2025年前三季度營收46.07億元,同比增長2386.38%,歸母淨利潤16.05億元,核心產品寒武紀590替代率達15%。國產GPU“四小龍”(摩爾線程、沐曦股份、壁仞科技、燧原科技)加速崛起,2025年迎來上市潮:摩爾線程12月5日登陸科創板,上市首日股價躋身A股Top 3,市值3595億元,業務覆蓋AI智算、圖形渲染和智能座艙SoC晶片等領域;沐曦股份12月17日登陸科創板,總募資規模約41.97億元,核心產品曦雲C600性能介於A100和H100之間,實現全流程國產供應鏈閉環,2026年上半年正式量產;壁仞科技港股IPO獲備案,聚焦高性能通用GPU,公開融資總額超50億元;燧原科技啟動上市輔導,擬在科創板上市。其他硬體環節,中國在伺服器、光模組、感測器等領域具有全球競爭力:伺服器領域,浪潮資訊、華為佔據全球智算伺服器市場的25%份額,浪潮AI伺服器出貨量全球第一;光模組領域,中際旭創、天孚通信在CPO、OCS等技術上領先,2025年全球市場份額達30%;感測器領域,華為、大疆創新在LiDAR領域突破,車規級LiDAR單價降至800元以下,國內市場份額達20%。3.3.2 中游算力服務:基建領先,服務生態完善算力基礎設施方面,中國“東數西算”工程成效顯著,建成8大算力樞紐、10個國家資料中心叢集,2025年新增算力60%以上集聚國家樞紐節點,新建大型資料中心綠電佔比超80%。截至2025年3月底,中國智能算力規模達748 EFLOPS,預計2026年達1460.3 EFLOPS,2028年達2781.9 EFLOPS。頭部智算中心包括華為昇騰AI計算中心、阿里達摩院智算中心、騰訊智算中心等,其中華為昇騰AI計算中心已在全國建成20個節點,總算力達500 EFLOPS。算力服務方面,阿里雲、騰訊雲、百度智能雲、華為雲佔據國內雲算力市場的80%份額:阿里雲推出“飛天智算平台”,支援萬卡級大模型訓練,服務超10萬家企業;騰訊雲推出“混元智算平台”,整合自研晶片與輝達晶片,提供彈性算力租賃服務;百度智能雲“千帆大模型平台”聚焦空間大模型服務,已接入百度文心空間大模型等20餘款行業大模型;華為雲“盤古算力平台”依託昇騰晶片,提供全端國產化算力服務。算力網路方面,中國營運商牽頭推動算力網路建設,中國電信“天翼算力網路”、中國移動“算力網路”、中國聯通“智慧算力網路”已實現全國主要城市覆蓋,支援算力的按需調度與跨省互聯。2025年國內營運商算力投資增20%以上,算力核心產業規模2026年達2.6兆元,帶動相關產業超12兆元。3.3.3 下游應用:場景豐富,規模化落地加速中國空間智能應用場景豐富,智慧城市、工業智能空間、智能家居、自動駕駛等領域均實現規模化落地:智慧城市領域,試點項目覆蓋全國89%地級市,北京、上海、深圳等超大城市完成全域智能空間基礎設施建設,城市治理響應速度提升70%,能耗管理效率提高45%;工業智能空間領域,數字孿生工廠覆蓋率突破60%,基於邊緣計算的即時最佳化系統使生產線OEE平均提升18個百分點;智能家居領域,全屋智能滲透率達12.3%,華為鴻蒙生態與小米AIoT平台連接裝置突破8億台;自動駕駛領域,百度Apollo、小鵬汽車、理想汽車等企業的Level 3等級自動駕駛車型實現量產,Level 4等級在特定區域試點營運。政策支援方面,中國出台多項專項政策推動算力與空間智能產業發展:《智能空間產業發展行動計畫(2025-2030)》明確培育30家以上獨角獸企業,組建國家級智能空間創新中心,完成73項行業標準制定;《“十四五”數字經濟發展規劃》要求2025年智能家居市場滲透率達到40%;《建築節能與智能化發展綱要》提出2030年新建建築智能化系統覆蓋率達90%以上,存量建築改造率不低於60%。3.4 國內外產業鏈對比:差距與優勢並存3.4.1 核心差距:高端晶片與生態建構1. 高端晶片技術差距:國外晶片製程已推進至2nm,輝達B200、AMD MI350等產品性能領先,國內最先進製程為3nm,昇騰910B、沐曦C600等產品性能介於A100和H100之間,與最新產品存在一代差距;晶片架構設計能力不足,國外企業擁有成熟的GPU架構(如輝達CUDA架構),國內架構生態尚在建構。2. 軟體生態差距:國外形成“晶片-框架-應用”的完整生態,輝達CUDA生態擁有數百萬開發者,支援各類AI框架與應用;國內生態較為分散,昇騰MindSpore、百度飛槳等框架的開發者數量與應用覆蓋度不足,跨框架相容性差。3. 高端感測器差距:LiDAR、毫米波雷達等高端感測器的核心元器件(如雷射發射器、探測器)依賴進口,國內企業在精度、可靠性等方面存在差距,車規級LiDAR的國外品牌市場份額達80%。3.4.2 中國優勢:市場規模與政策支援1. 龐大的市場需求:中國是全球最大的算力與空間智能應用市場,2025年智能算力規模佔全球37.8%,智慧城市、工業製造等場景的需求規模全球領先,為本土企業提供了廣闊的試錯與迭代空間。2. 強有力的政策支援:國家層面出台多項專項政策,從算力基建、技術研發、標準制定到應用推廣全方位支援,“東數西算”工程、新基建戰略等為產業發展提供了充足的資金與資源保障。3. 完善的製造業基礎:中國擁有全球最完整的電子資訊製造業產業鏈,在伺服器、光模組、終端裝置等硬體製造領域具有全球競爭力,可支撐算力產業鏈的本地化生產與成本控制。4. 快速的迭代速度:本土企業在應用場景落地方面迭代速度快,能夠快速響應客戶需求,在智慧城市、工業智能空間等細分場景形成差異化優勢。3.4.3 未來競爭焦點:異構算力與生態協同未來全球算力產業鏈的競爭焦點將集中在異構算力協同與生態建構:一是異構算力晶片的研發,整合GPU、CPU、NPU等多種晶片優勢,提升算力能效比;二是統一調度平台的建設,實現雲端-邊緣-終端的算力協同;三是開放生態的建構,通過開源框架、開發者社區等吸引全球開發者,擴大應用覆蓋度;四是綠色算力的突破,通過液冷、綠電等技術降低能耗,提升產業可持續性。第四章 算力需求分析:空間智能驅動的分層需求與增長邏輯4.1 算力需求總體特徵:規模爆發與結構分化2025年全球算力需求呈現“規模爆發式增長”與“結構差異化分化”的雙重特徵。從規模來看,全球智能算力規模達1980 EFLOPS,較2023年增長5倍,其中空間智能相關算力需求達693 EFLOPS,佔比35%,成為核心增長引擎。IDC測算2025年全球AI模型訓練與推理算力需求650 EFLOPS,多模態模型貢獻60%算力增量,而空間智能是多模態模型的核心應用場景。從結構來看,算力需求呈現三大分化趨勢:一是訓練與推理分化,訓練算力2025-2027年CAGR 25%-30%,主要用於GPT-5等兆級空間大模型預訓練;推理算力同期CAGR 90%-100%,為訓練的近4倍,2028年規模超訓練,成為算力增長主力,主要源於空間智能應用的規模化落地(如自動駕駛推理、智能路側感知)。二是算力形態分化,雲端算力佔比70%-75%,但邊緣算力增速(CAGR 50%-60%)遠超雲端,終端算力穩步增長,形成“雲端重訓練、邊緣重推理、終端重感知”的格局。三是行業需求分化,網際網路行業仍佔主導(60%),但金融、醫療、自動駕駛、工業模擬等場景增速超行業平均,生物醫藥AI模型訓練需求同比增210%。算力需求的增長邏輯可總結為“技術驅動-場景牽引-政策護航”三大核心要素:技術驅動方面,空間大模型參數規模從千億級邁向兆級,GPT-5級空間模型訓練需萬卡級GPU叢集,單次訓練成本超千萬美元,倒逼算力規模提升;場景牽引方面,智慧城市、自動駕駛等場景的規模化落地,帶來海量即時推理需求,Token消耗激增,中信證券預計2030年全球Token消耗為2025年的100-340倍,推理算力規模為2025年的65-220倍;政策護航方面,全球主要經濟體出台算力基建支援政策,中國“東數西算”、美國《晶片與科學法案》、歐盟“數字羅盤計畫”等為算力需求增長提供保障。4.2 分行業算力需求:核心場景與量化分析4.2.1 智慧城市:全域感知與智能調度的算力盛宴智慧城市是空間智能的核心應用場景,算力需求源於全域空間感知、數字孿生建模、智能調度決策三大環節,2025年算力需求達180 EFLOPS,佔空間智能總算力的25.9%。具體場景包括智能交通、智能安防、智能市政、智慧能源等:1. 智能交通:核心需求是即時交通感知與動態調度,單條智能路側裝置(含LiDAR、攝影機、雷達)每秒產生10GB資料,需邊緣算力進行即時處理(目標識別、軌跡預測),單路裝置推理算力需求達10 TOPS;城市級智能交通調度平台需雲端算力進行全域最佳化,一線城市(如北京、上海)調度平台的雲端算力需求達5 EFLOPS。2025年智能交通領域算力需求達80 EFLOPS,同比增長70%。2. 智能安防:核心需求是全域視訊監控與異常行為識別,超大城市的視訊監控點位超10萬個,單個點位需0.5 TOPS推理算力,邊緣端總算力需求達5 EFLOPS;雲端需進行視訊資料回溯分析與模型訓練,算力需求達2 EFLOPS。2025年智能安防領域算力需求達15 EFLOPS,同比增長50%。3. 數字孿生城市:核心需求是全域3D建模與動態模擬,超大城市全域數字孿生建模需處理PB級空間資料,訓練算力需求達10 EFLOPS;動態模擬需即時更新城市狀態,推理算力需求達5 EFLOPS。2025年數字孿生城市領域算力需求達30 EFLOPS,同比增長100%。4. 智慧能源:核心需求是電網、管網的空間監測與最佳化調度,城市級電網數字孿生需處理海量感測器資料,推理算力需求達3 EFLOPS;能源調度最佳化模型訓練需1 EFLOPS算力。2025年智慧能源領域算力需求達8 EFLOPS,同比增長60%。政策驅動是智慧城市算力需求增長的核心動力,中國《智能空間產業發展行動計畫(2025-2030)》要求2025年前完成200個智慧城市試點建設,配套財政補貼規模超800億元;住建部《建築節能與智能化發展綱要》提出2030年新建建築智能化系統覆蓋率達90%以上。 (AI雲原生智能算力架構)
🎯緯創、鴻海非首選!AI賺錢遊戲規則徹底改變!這檔「隱形冠軍」才是主力偷偷押寶的真贏家!Line@連結:https://lin.ee/mua8YUP🎯很多人問我:台股這一波回測季線的強彈,是反彈逃命?還是要再噴過28568?我直接給結論:今年耶誕週,台股會非常好。不是小好,是「讓你不敢空手的那種好」。為什麼?因為市場現在在怕,但真正的大咖正在笑。👉你仔細回頭看就知道,這波修正有沒有破壞多頭?沒有。高點還是越來越高,低點沒有破前低,多頭結構一點都沒壞。還有月線MACD連續兩年沒背離,這種結構,歷史經驗只有一種走法:前高一定過,而且會過很遠。👉再看籌碼。外資賣現貨,期貨部位卻超誠實,三天回補 一萬口期貨空單。官股呢?大跌不是跑,是直接護盤。這代表什麼?贏家把恐慌當禮物。那真正的引爆點是什麼?不是新聞、不是口號,是【台積電2奈米】。👉這不是製程微縮,是從FinFET直接跳到GAA架構,等於高速公路直接升級成真空隧道。AI算力、功耗、密度,全部重洗牌。誰掌握2奈米,誰就是AI世界的王。這場升級,會讓一堆「規格型公司」直接起飛。✔ 設備與耗材:6788華景電、3680家登、4772台特化、4749新應材✔ 高速材料:2383台光電、6274台燿、1815富喬✔ CPO矽光子:3363上詮、3163波若威、4971IET-KY記住一句話:行情,永遠在半信半疑中成長。接下來勝負的關鍵點就在👉 你手上的股票,是「2奈米規格升級」的真贏家?👉 還是,只是熱鬧一場的陪跑?🔴接下來我們會在粉絲團持續幫大家鎖定+追蹤,若還不知道該如何操作?那建議你務必要鎖定江江在Line @,將有更進一步的訊息給大家了解。https://lin.ee/mua8YUP🔴想了解還未起漲的市場主流,同步了解大盤多空轉折點及學習預測技術分析,江江YT節目都會持續追蹤+預告。https://reurl.cc/02drMk********************************************************有持股問題或想要飆股→請加入Line:https://lin.ee/mua8YUP江江的Youtube【點股成金】解盤:https://reurl.cc/02drMk*********************************************************(本公司所推薦分析之個別有價證券 無不當之財務利益關係以往之績效不保證未來獲利 投資人應獨立判斷 審慎評估並自負投資風險)
🎯你被洗出場了嗎?美光大漲,台股將複製11/21劇本?!Line@連結:https://lin.ee/mua8YUP🎯這先股票誰先噴?2330台積電、2408南亞科、2317鴻海、5309系統電、3037欣興、4991環宇-KY📌台股連跌四天後,今日出現強力反彈相信大家都不會意外才對!因為這次又跟11月一樣這個畫面,跟11/21幾乎一模一樣。指數再一次精準回測仍上彎的生命線(季線後止跌),當時一堆人嚇到不敢看盤,結果呢?守住後直接展開新一波攻勢。📌再來看市場最怕的四個字:AI泡沫?美光最新財測已直接打臉市場:下季營收187億美元,市場只估142億;EPS 8.42美元,幾乎是預期的兩倍。美光執行長講得很白:「AI資料中心需求正在加速轉強。」這代表什麼?AI不但沒退燒,2026年才是真正主秀登場,從晶片競賽,走向大型資料中心大建設+AI應用全面落地。現在連蘋果都坐不住了。市場傳出2026年新版Siri將導入Google Gemini,當iPhone正式進化成AI Phone,又是一波換機潮!👇重點來了台股目前多頭可用之兵超多除了記憶體外,六大軍火庫已滿倉備戰:被動元件供不應求、2奈米設備滿單、CPO(矽光子)、高階ABF載板、低軌衛星全面啟動。最後結論:AI不是口號,是一條會把整條供應鏈一起拉上來的需求主線。這波拉回,再次證明:機會是留給有準備的人這次拉回又是彎腰撿鑽石的機會。🔴接下來我們會在粉絲團持續幫大家鎖定+追蹤,若還不知道該如何操作?那建議你務必要鎖定江江在Line @,將有更進一步的訊息給大家了解。https://lin.ee/mua8YUP🔴想了解還未起漲的市場主流,同步了解大盤多空轉折點及學習預測技術分析,江江YT節目都會持續追蹤+預告。https://reurl.cc/02drMk********************************************************有持股問題或想要飆股→請加入Line:https://lin.ee/mua8YUP江江的Youtube【點股成金】解盤:https://reurl.cc/02drMk*********************************************************(本公司所推薦分析之個別有價證券 無不當之財務利益關係以往之績效不保證未來獲利 投資人應獨立判斷 審慎評估並自負投資風險)
Nature重磅:中國牽頭全球AI治理!這是阻止AI毀滅人類的唯一希望
"AI可能毀滅人類,而中國正在引領全球應對這場危機——其他國家必須加入!"你是否知道,全球AI發展正面臨一個致命悖論:我們正在以火箭般的速度開發AI,卻沒有建立相應的安全機制?Nature最新 editorial 發出震撼警告:中國提出的"世界人工智慧合作組織"(WAICO)可能是阻止AI毀滅人類的唯一希望,而美國等國家的不作為將使全球陷入危險境地!🔥 AI的雙面性:天使還是魔鬼?AI模型擁有令人驚嘆的能力,既能加速科學發現、推動經濟增長,也可能在不經意間造成災難性後果:• 加劇社會不平等:AI演算法可能強化現有的社會偏見• 助力犯罪活動:深度偽造技術已用於詐騙和政治操縱• 傳播虛假資訊:AI生成內容難以分辨真偽• 最可怕的威脅:部分頂尖研究者警告,超級智能AI可能在未來"毀滅人類""它們不完全理解世界,可能會以不可預測的方式失敗。" ——Nature editorial更令人擔憂的是,在AI開發的"百米衝刺"中,安全問題被嚴重忽視。許多專家擔心,當前的AI熱潮正在形成一個即將破裂的經濟泡沫,而全球卻缺乏統一的監管框架!🌐 全球AI治理:三國演義的現狀🇺🇸 美國:自由放任的"野蠻生長"美國作為全球AI技術的領導者,卻沒有國家層面的AI法規,僅靠各州零散的法律和企業自律。最新發佈的"AI安全指數"顯示,沒有一家美國公司得分高於C+。更令人擔憂的是,美國政府不僅沒有加強監管,反而在推動"創世任務"(Genesis Mission),為AI開發者提供前所未有的政府資料存取權,被比作"登月計畫"。"美國公司期望自己監管自己,同時又在無休止的競爭中。" ——Nature🇪🇺 歐盟:謹慎前行的"AI法案"歐盟去年推出的《AI法案》要求最強大的AI系統加強威脅分析,但實施效果尚不明確。媒體報導稱,企業正在向歐盟施壓,要求放寬法律限制。儘管有巨額罰款的威脅,但法案實施仍處於初級階段,實際效果有待觀察。🇨🇳 中國:快速行動的"監管先鋒"與美歐不同,中國自2022年以來已推出一系列AI法規和技術標準:• 要求AI開發者提交生成式AI模型進行部署前安全評估• 強制在AI生成內容上加入可見、不可磨滅的水印• 2025年上半年發佈的AI國家標準數量等於過去三年總和"中國在2025年上半年發佈的AI國家標準數量等於過去三年總和。" ——Concordia AI中國AI監管的核心理念是:既要推動AI廣泛應用,又要確保可追溯性和企業責任。儘管中國AI企業在"AI安全指數"上的得分低於西方同行(部分原因是未能充分應對災難性濫用風險),但其監管速度和系統性令人矚目。🌐 WAICO:中國提出的"AI聯合國"中國提出建立"世界人工智慧合作組織"(WAICO),旨在協調全球AI監管規則,同時"充分尊重各國政策和實踐的差異",並特別關注全球南方國家。WAICO的總部計畫設在上海,雖然細節尚未明確,但Nature認為:"建立這樣一個機構符合所有國家的利益,全球各國政府都應該加入。"WAICO不會直接強制執行AI規則(中國也表示支援聯合國主導的全球AI治理),但它可能成為各國逐漸凝聚共識的平台。🤝 為什麼中國方案值得關注?1️⃣ 中國AI的全球影響力中國推行"開放權重"政策,使全球公司越來越多地基於中國AI建構服務。中國AI模型的可獲取性和低成本正在重塑全球AI生態。"中國'開放權重'模型政策意味著全球公司越來越多地基於中國AI建構服務。" ——Nature2️⃣ 全球治理的迫切需求現有全球AI治理努力——如經濟合作與發展組織的AI原則和歐洲委員會的《人工智慧框架公約》——要麼不具約束力,要麼未得到有效執行。Nature建議,WAICO可以借鑑國際原子能機構(IAEA)的模式:各國同意限制AI開發並開放系統接受檢查,使各國能夠驗證彼此是否遵守規則。🌍 科學啟示:AI治理不是零和遊戲Nature editorial 發出重要警示:"AI治理不應被視為地緣政治競賽,認為一個國家的安全可以通過技術主導來保證。'獲勝'對大多數國家來說不是選項,AI軍備競賽不會保證人們更安全或更富裕。"相反,全球應共同合作,就什麼是安全的AI以及世界希望如何利用AI達成共識。中國學者Angela Zhang指出,儘管中國監管有其政治考量,但其基本動機與他國"相當相似":"他們不想被機器人消滅。"💡 科研人員和企業的行動指南1️⃣ 關注中國AI標準隨著中國AI影響力的擴大,瞭解中國的AI標準對全球研究人員和企業至關重要。忽視這一趨勢可能導致技術落後或合規風險。2️⃣ 參與全球對話科研人員應積極參與多邊對話,幫助評估什麼樣的全球治理既有效又現實。AI安全需要全球智慧,而非單一國家的解決方案。3️⃣ 平衡創新與安全企業和研究機構需要在追求創新的同時,主動加強內部AI安全機制,而不是等待監管強制要求。 (聖不可知)